

Printed Pages: 8

MBA015

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 7105

Roll No.

M.B.A

(SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10 BUSINESS STATISTICS

Time: 3 Hours]

[Total Marks: 100

Note:

- (1) The question paper contains three parts.
- (2) All questions are compulsory.
- (3) Figures given at the right margin indicate marks.

PART-I

1×20≈20

- 1 Choose the correct answer and write its serial order:
 - (a) The sum of deviations taken from arithmetic mean is:
 - (i) Minimum
- (ii) Zero
- (iii) Maximum
- (iv) None of the above
- (b) While calculating median of a data set, the first step is:
 - (i) Calculate mean of the two middle items
 - (ii) Arrange the data in ascending or descending order
 - (iii) Calculate mean of the first and the last items
 - (iv) None of the above

(c)	15 and its coefficient indard deviation is:				
	(i) (iii)		(ii) (iv)		
(d)		th one of the cormal curve:		is more peaked than	
	(1)	Mesokurtic	(ii)	Platykurtic	
	(iii)	Laptokurtic	(iv)	None of the above	
(e)		ne series analy tions are studi		th trends and seasonal cause :	
	(i)	They allow the from the serie		ation of the components	
	(ii)	They describe	e past	trends	
	(iii)	Both the abo	ve	·	
	(iv)	None of the	above		
(f)		th of the following test?	lowing	g index satisfies the	
	(i)	Laspeyer's in	dex		
	(ii)	Paasche's ind	ex		
	(iii)	Bowley's ind	ex		
	(iv)	Fisher's inde	ĸ		
(g) When the regression line of Y on X and the regression line of X on Y form a 90° angle, then:					
	(i)	r = 1			
	(ii)	$\dot{\mathbf{r}} = 0$			
	` /	r = 0.5			
	(iv)	None of the	above		
05]		III līdī līdā (Alī Ā\$W ļĀ) IŅ	2	[Contd	

(b)	When the two w	gression lines coincide, then r is :					
(11)							
		(ii) $r = -1$					
	(iii) 1	(iv) None of these.					
(i)	If $a = 6$ and $b =$	3. If the independent variable					
	has a value of 5, what would be the value of						
	dependent variable ?						
	(i) 15	(ii) 18					
	(iii) 10	$(i\mathbf{v})$ 21					
(j) Which of the following correlation coefficients							
	shows the highes	shows the highest degree of association?					
	(i) 0.95	(ii) 1					
	(iii) −1	(iv) Both (ii) and (iii) above					
(k)	If the outcome of	of one event does not influence					
	another event, then the two events are:						
	(i) dependent						
	(ii) independent						
	(iii) mutually ex						
	(iv) None of these.						
(1)		pability of getting a total of					
(1)	5 when a pair of die is thrown simultaneously?						
	5 when a pair c	of the 18 thrown simultaneously ?					
	1	1					

(iii)
$$\frac{1}{9}$$
 (iv) $\frac{1}{12}$

(m) What is the probability of getting three heads or three tails on three successive tosses? 0.25 (ii) 0.125

(iii) 0.025 (iv) 0.50

(n)	A Binomial distribution is approximate to a
	Poisson distribution when:
	(i) both n and p are large
	(ii) both n and p are small
	(iii) n is small and p is large
	(iv) n is large and p is small
(0)	If a normal distribution has a mean = 20, then its mode is:
	(i) 10 (ii) 20
	(iii) 25 (iv) 30
(p)	If the critical value of Z is 1.96, then the significance level of two-tail test is:
	(i) 0.025 (ii) 0.50
	(iii) 0.05 (iv) None of these
(q)	Assuming that we want to test whether
	a population mean is significantly different
	from 75, what should be the alternate hypothesis?
	(i) $\mu < 75$ (ii) $\mu > 75$
	(iii) $\mu \neq 0$ (iv) $\mu = 0$
(r)	A chi-square value can never be negative :
	(i) True (ii) False
051	

- A contingency table for a chi-square test has 8 rows and 6 columns. How many degrees of freedom should be used?
 - (ii) 14 (i)
 - (iv) 35 (iii) 13
- A contingency table :
 - always has two variables
 - always has two degrees of freedom
 - (iii) always has two dependent variables
 - (iv) None of these

PART - II

2 Attempt any two: 15×2

- (a) The mean annual salary of employees of a company is Rs. 30,000/-. The mean annual salaries of male and female employees are Rs. 35,000/- and Rs. 23,000/- respectively. Find out the percentage of male and female employees working in the company.
- The mean weekly sales of soap bars in departmental stores was 146.3 bars per store. After an advertising campaign the mean weakly sales in 22 stores for a typical week increased to 153.7 and showed a standard deviation of 17.2. Was the advertising campaign successful? (given tabulated value of t for 21 d.f. at 5% level of significance = 1.72)

(c) Two computers A and B are to be marketed. A salesman who is assigned a job of finding customers for them has 60% and 40% chances of succeding in case of computers A and B. The computers can be sold independently. Given that he was able to sale at least one computer, what is the probability that the computer A has been sold?

PART - III

 $12\frac{1}{2}\times4$

3 "Statistics are like a clay of which you can make a God or a Devil as you please." In the light of the statement discuss the uses and limitations of statistics.

OR

3 An incomplete frequency distribution is given as follows:

Variable	Frequency
10 - 20	12
20 - 30	30
30 - 40	?
40 - 50	65
50 - 60	?
60 - 70	25
70 - 80	18
	Total 229

Given that the median value is 46, determine the missing frequencies using the median formula.

[Contd...

Briefly explain the components of a time series. What are the limitations of time series analysis in forecasting?

OR

- Calculate price index numbers for the year 2001 with 1991 as the base year from the following data using:
 - (a) Laspeyer's index
 - (b) Paasche's index and
 - (c) Fisher's index

Commodity	Unit	1991		2001	
		Price (Rs.)	Value	Qty consumed	Value
A	kg	10	1500	160	1760
\boldsymbol{B}	kg	12	1080	100	1300
C	Metre	15	900	60	960
Ď	Packets	9	450	40	480

5 Define independent and mutually exclusive events. Can two events be mutually exclusive and independent simultaneously, explain with an example.

OR

- 5 The average monthly sales of 5000 firms are normally distributed. Its mean and standard deviation are Rs. 35,000 and Rs. 10,000 respectively. Find:
 - (i) The number of firms having sales over Rs. 40,000
 - (ii) The number of firms having sales between Rs. 30,000 and Rs. 40,000

(Given area under normal curve from o to z for Z = 0.4 = 0.1554 and Z = 0.6 = 0.2257)

- 6 Write notes on any two of the following:
 - (a) Standard Deviation
 - (b) Rank correlation
 - (c) Chi-square test
 - (d) Normal Distribution.